skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, there has been increasing interest in using Large Language Models (LLMs) to construct complex multi-agent systems to perform tasks such as compiling literature reviews, drafting consumer reports, and planning vacations. Many tools and libraries exist for helping create such systems, however none support *recursive* multi-agent systems—where the models themselves flexibly decide when to delegate tasks and how to organize their delegation structure. In this work, we introduce ReDel: a toolkit for recursive multi-agent systems that supports custom tool-use, delegation schemes, event-based logging, and interactive replay in an easy-to-use web interface. We show that, using ReDel, we are able to achieve significant performance gains on agentic benchmarks and easily identify potential areas of improvements through the visualization and debugging tools. Our code, documentation, and PyPI package are open-source at https://github.com/zhudotexe/redel, and free to use under the MIT license. 
    more » « less
  2. The role of a Dungeon Master, or DM, in the game Dungeons & Dragons is to perform multiple tasks simultaneously. The DM must digest information about the game setting and monsters, synthesize scenes to present to other players, and respond to the players' interactions with the scene. Doing all of these tasks while maintaining consistency within the narrative and story world is no small feat of human cognition, making the task tiring and unapproachable to new players. Large language models (LLMs) like GPT-3 and ChatGPT have shown remarkable abilities to generate coherent natural language text. In this paper, we conduct a formative evaluation with DMs to establish the use cases of LLMs in D&D and tabletop gaming generally. We introduce CALYPSO, a system of LLM-powered interfaces that support DMs with information and inspiration specific to their own scenario. CALYPSO distills game context into bite-sized prose and helps brainstorm ideas without distracting the DM from the game. When given access to CALYPSO, DMs reported that it generated high-fidelity text suitable for direct presentation to players, and low-fidelity ideas that the DM could develop further while maintaining their creative agency. We see CALYPSO as exemplifying a paradigm of AI-augmented tools that provide synchronous creative assistance within established game worlds, and tabletop gaming more broadly. 
    more » « less
  3. Many commercial and open-source models claim to detect machine-generated text with extremely high accuracy (99% or more). However, very few of these detectors are evaluated on shared benchmark datasets and even when they are, the datasets used for evaluation are insufficiently challenging—lacking variations in sampling strategy, adversarial attacks, and open-source generative models. In this work we present RAID: the largest and most challenging benchmark dataset for machine-generated text detection. RAID includes over 6 million generations spanning 11 models, 8 domains, 11 adversarial attacks and 4 decoding strategies. Using RAID, we evaluate the out-of-domain and adversarial robustness of 8 open- and 4 closed-source detectors and find that current detectors are easily fooled by adversarial attacks, variations in sampling strategies, repetition penalties, and unseen generative models. We release our data along with a leaderboard to encourage future research. 
    more » « less
  4. Language model applications are becoming increasingly popular and complex, often including features like tool usage and retrieval augmentation. However, existing frameworks for such applications are often opinionated, deciding for developers how their prompts ought to be formatted and imposing limitations on customizability and reproducibility. To solve this we present Kani: a lightweight, flexible, and model-agnostic open-source framework for building language model applications. Kani helps developers implement a variety of complex features by supporting the core building blocks of chat interaction: model interfacing, chat management, and robust function calling. All Kani core functions are easily overridable and well documented to empower developers to customize functionality for their own needs. Kani thus serves as a useful tool for researchers, hobbyists, and industry professionals alike to accelerate their development while retaining interoperability and fine-grained control. 
    more » « less
  5. Dungeons & Dragons (D&D) is a tabletop roleplaying game with complex natural language interactions between players and hidden state information. Recent work has shown that large language models (LLMs) that have access to state information can generate higher quality game turns than LLMs that use dialog history alone. However, previous work used game state information that was heuristically created and was not a true gold standard game state. We present FIREBALL, a large dataset containing nearly 25,000 unique sessions from real D&D gameplay on Discord with true game state info. We recorded game play sessions of players who used the Avrae bot, which was developed to aid people in playing D&D online, capturing language, game commands and underlying game state information. We demonstrate that FIREBALL can improve natural language generation (NLG) by using Avrae state information, improving both automated metrics and human judgments of quality. Additionally, we show that LLMs can generate executable Avrae commands, particularly after finetuning. 
    more » « less
  6. We propose a novel task, G4C (Goal-driven Guidance Generation in Grounded Communication), for studying goal-driven and grounded natural language interactions. Specifically, we choose Dungeons and Dragons (D&D) -- a role-playing game consisting of multiple player characters and a Dungeon Master (DM) who collaborate to achieve a set of goals that are beneficial to the players -- as a testbed for this task. Here, each of the player characters is a student, with their own personas and abilities, and the DM is the teacher, an arbitrator of the rules of the world and responsible for assisting and guiding the students towards a global goal. We propose a theory-of-mind-inspired methodology for training such a DM with reinforcement learning (RL), where a DM: (1) learns to predict how the players will react to its utterances using a dataset of D&D dialogue transcripts; and (2) uses this prediction as a reward function providing feedback on how effective these utterances are at guiding the players towards a goal. Human and automated evaluations show that a DM trained with RL to generate guidance by incorporating a theory-of-mind of the players significantly improves the players' ability to achieve goals grounded in their shared world. 
    more » « less
  7. In this paper, we introduce DuelGAN, a generative adversarial network (GAN) solution to improve the stability of the generated samples and to mitigate mode collapse. Built upon the Vanilla GAN’s two-player game between the discriminator D1 and the generator G, we introduce a peer discriminator D2 to the min-max game. Similar to previous work using two discriminators, the first role of both D1, D2 is to distinguish between generated samples and real ones, while the generator tries to generate high-quality samples which are able to fool both discriminators. Different from existing methods, we introduce a duel between D1 and D2 to discourage their agreement and therefore increase the level of diversity of the generated samples. This property alleviates the issue of early mode collapse by preventing D1 and D2 from converging too fast. We provide theoretical analysis for the equilibrium of the min-max game formed among G,D1,D2. We offer convergence behavior of DuelGAN as well as stability of the min-max game. It’s worth mentioning that DuelGAN operates in the unsupervised setting, and the duel between D1 and D2 does not need any label supervision. Experiments results on a synthetic dataset and on real-world image datasets (MNIST, Fashion MNIST, CIFAR-10, STL-10, CelebA, VGG) demonstrate that DuelGAN outperforms competitive baseline work in generating diverse and high-quality samples, while only introduces negligible computation cost. Our code is publicly available at https://github.com/UCSC-REAL/DuelGAN. 
    more » « less